minuend cryptosystem - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

minuend cryptosystem - перевод на Английский

Damgaard-Jurik cryptosystem; Damgaard–Jurik cryptosystem; Damgård-Jurik cryptosystem; Damgard–Jurik cryptosystem; Damgard-Jurik cryptosystem

minuend cryptosystem      
(subtractive cryptosystem) криптосистема, выполняющая шифрование вычитанием ключа из открытого текста (а расшифрование - сложением шифротекста с ключом) (subtractive cryptosystem) криптосистема, выполняющая шифрование вычитанием ключа из открытого текста (а расшифрование - сложением шифротекста с ключом)
RSA algorithm         
  • [[Adi Shamir]], co-inventor of RSA (the others are [[Ron Rivest]] and [[Leonard Adleman]])
ALGORITHM FOR PUBLIC-KEY CRYPTOGRAPHY
RSA cryptosystem; RSA encryption; Rivest-Shamir-Adleman; RSA algorithm; RSA Cryptosystem; Rsa encryption; RSA cipher; Branch prediction analysis attacks; Branch prediction analysis; Rivest Shamir Adleman; Rivest, Shamir, Adleman; Rsa Algorithm; Rivest-Shamir-Adleman Algorithm; Rsa algorithm; Rivest-Shamir-Adleman algorithm; RSA (algorithm); RSA public key cryptography; RSA (crypto); Rivest-Shamir-Adelson; Rivest-Shamir-Adelman; Rivest–Shamir–Adleman cryptosystem; Rivest–Shamir–Adleman; Rivest-Shamir-Adleman cryptosystem
(Rivest-Shamir-Adleman algorithm) алгоритм криптосистемы с открытым ключом Ривеста, Шамира и Адлемана, алгоритм криптосистемы RSA
RSA encryption         
  • [[Adi Shamir]], co-inventor of RSA (the others are [[Ron Rivest]] and [[Leonard Adleman]])
ALGORITHM FOR PUBLIC-KEY CRYPTOGRAPHY
RSA cryptosystem; RSA encryption; Rivest-Shamir-Adleman; RSA algorithm; RSA Cryptosystem; Rsa encryption; RSA cipher; Branch prediction analysis attacks; Branch prediction analysis; Rivest Shamir Adleman; Rivest, Shamir, Adleman; Rsa Algorithm; Rivest-Shamir-Adleman Algorithm; Rsa algorithm; Rivest-Shamir-Adleman algorithm; RSA (algorithm); RSA public key cryptography; RSA (crypto); Rivest-Shamir-Adelson; Rivest-Shamir-Adelman; Rivest–Shamir–Adleman cryptosystem; Rivest–Shamir–Adleman; Rivest-Shamir-Adleman cryptosystem

общая лексика

RSA-кодирование (шифрование)

схема (алгоритм) асимметричного шифрования с открытыми ключами. Названа по фамилиям авторов: Rivest - Shamir - Adelman (Рон Райвест, Ади Шамир и Леонард Эйдельман), разработавших эту схему шифрования в 1978 г. С некоторыми изменениями эта схема используется в системе шифрования PGP

Определение

RSA encryption
<cryptography, algorithm> A public-key cryptosystem for both encryption and authentication, invented in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman. Its name comes from their initials. The RSA algorithm works as follows. Take two large {prime numbers}, p and q, and find their product n = pq; n is called the modulus. Choose a number, e, less than n and {relatively prime} to (p-1)(q-1), and find its reciprocal mod (p-1)(q-1), and call this d. Thus ed = 1 mod (p-1)(q-1); e and d are called the public and private exponents, respectively. The public key is the pair (n, e); the private key is d. The factors p and q must be kept secret, or destroyed. It is difficult (presumably) to obtain the private key d from the public key (n, e). If one could factor n into p and q, however, then one could obtain the private key d. Thus the entire security of RSA depends on the difficulty of factoring; an easy method for factoring products of large prime numbers would break RSA. RSA FAQ (http://rsa.com/rsalabs/faq/faq_home.html). (2004-07-14)

Википедия

Damgård–Jurik cryptosystem

The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo n s + 1 {\displaystyle n^{s+1}} where n {\displaystyle n} is an RSA modulus and s {\displaystyle s} a (positive) natural number. Paillier's scheme is the special case with s = 1 {\displaystyle s=1} . The order φ ( n s + 1 ) {\displaystyle \varphi (n^{s+1})} (Euler's totient function) of Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be divided by n s {\displaystyle n^{s}} . Moreover, Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be written as the direct product of G × H {\displaystyle G\times H} . G {\displaystyle G} is cyclic and of order n s {\displaystyle n^{s}} , while H {\displaystyle H} is isomorphic to Z n {\displaystyle Z_{n}^{*}} . For encryption, the message is transformed into the corresponding coset of the factor group G × H / H {\displaystyle G\times H/H} and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of H {\displaystyle H} . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.

Как переводится minuend cryptosystem на Русский язык